
95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Data Structures and
Algorithms for Information

Processing

Lecture 13: Sorting II

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Outline

•  Brief review from last time
•  Radix sorting and indexing
•  Recursive sorting algorithms

•  Quicksort

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Sorting Demonstration

http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Intuitive Introduction

Main’s slides from Chapter 12

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Insertion Sort
void insertionSort(int A[]) {
 for(int i=1; i<A.length; i++)

 for(int j=i; j>0 && A[j]<A[j-1]; j--)
 swap(A[j],A[j-1]);

}

•  Worst case runs in O(n2), where n = A.length.

•  Best case, A is sorted already, runs in O(n).

•  Use if you’re in a hurry to code it , and speed is
not an issue.

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

What is the Average Disorder?
Theorem: The average disorder for a sequence of n
items is n(n-1)/4

Proof: Assume all permutations of array A equally
likely. If AR is the reverse of A, then disorder(A) +
disorder(AR) = n(n-1)/2 because A[i]<A[j] iff
AR[i]>AR[j]. Thus the average disorder over all
permutations is n(n-1)/4. 	�

Corollary: The average running time of any sorting
program that swaps only adjacent elements is O(n2).

Proof: It will have to do n(n-1)/4 swaps and may
waste time in other ways. 	�

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

To better O(n2) we must compare
non-adjacent elements

Shell Sort: Swap elements n/2, n/4, … apart

Heap Sort: Swap A[i] with A[i/2]

QuickSort: Swap around “median”

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

How many leaves must there for a
sorting tree for n items?

a[0]<a[1]

n!, the number of different permutations.

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

So a tree with n! leaves has depth at least lg n!.

Notice that depth = the maximum number of tests one

might have to perform.

lg n! = lg n(n-1)(n-2)…1

 = lg n + lg n-1 + lg n-2 + … + lg 1

 ≥ lg n + … + lg(n/2)

 ≥ (n/2) lg(n/2)

 ≥ (n/2) lg n - n/2

 = Ω(n lg n)

So any sort algorithm takes Ω(n lg n) comparisons.

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Is there a way to sort without
using binary comparisons?

 Ternary comparisons, K-way comparisons."

The basic Ω(n log n) result will still be true, because
Ω(log2 x)= Ω(logk x)."
"

Useful speed-up heuristic: use your data
as an index of an array."

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Consider sorting letters

int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts=0;
for(j=0; j<clist.length; j++)

 count[clist[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)
 while(count[i]-- > 0) clist[j++]=i+’a’;

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Sorting list of letters
int counts[26];
int j = 0;
for(int i=0; i<26; i++) counts=0;
for(j=0; j<clist.length; j++)

 count[clist[j]-’a’]++;
j=0;
for(int i=0; i<26; i++)
 while(count[i]-- > 0) clist[j++]=i+’a’;

Running time is O(26+clist.size()), i.e. linear!"

if clist = “abbcabbdaf”"
count = {3,4,1,1,0,1,0, …, 0}"

and new clist = “aaabbbbcdf”"

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Why does this beat n log n?

•  The operation count[clist[j]]++ is like a
26-way test; the outcome depends directly on
the data.

•  This is “cheating” because it won’t work if the
data range grows from 26 to 232.

•  Technique can still be useful — can break up
range into “buckets” and use mergesort on
each bucket

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort
A way to exploit the data-driven idea for large data
spaces.

Idea: Sort the numbers by their lowest digit. Then
sort them by the next lowest digit, being careful to
break ties properly. Continue to highest digit.

4567 3480 1908 2009 109
2132 9241 109 109 456
456 8721 2009 2132 1908
1908 3521 8721 9241 2009
3456 2132 3521 3297 2132
9241 456 2132 456 3297
109 3456 9241 3456 3456
5789 4567 456 3480 3480
3297 3297 3456 3521 3521
2009 1908 4567 4567 4567
8721 109 3480 8721 5789
3521 5789 5789 5789 8721
3480 2009 3297 1908 9241

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort

•  Each sort must be stable
 The relative order of equal keys is preserved

•  In this way, the work done for earlier bits is
not “undone”

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort
Informal Algorithm:

To sort items A[i] with value 0…232-1 (= INT_MAX)

•  Create a table of 256 buckets.

•  {For every A[i] put it in bucket A[i] mod 256.

•  Take all the items from the buckets 0,…, 255 in a FIFO
 manner, re-packing them into A.}

•  Repeat using A[i]/256 mod 256

•  Repeat using A[i]/2562 mod 256

•  Repeat using A[i]/2563 mod 256

•  This takes O(4*(256+A.length))

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort using Counts

void RadixSort(int a[], int b[], int N) {
 int i, j, pass, count[M];
 for (pass=0; pass < (w/m); pass++) {
 for (j=0; j < M; j++) count[j] = 0;
 for (i=1; i <= N; i++)
 count[a[i].bits(pass*m, m)]++;
 for (j=1; j < M; j++)
 count[j] = count[j-1] + count[j];
 for (i=N; i >= 1; i--)
 b[count[a[i].bits(pass*m,m)]--] =
 a[i];
 for (i=1; i <= N; i++) a[i] = b[i];
 }
}

The Queues can be avoided by using counts.!

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort using Queues
const int BucketCount = 256;
void RadixSort(vector<int> &A) {
 vector<queue<int> > Table(BucketCount);
 int passes = ceil(log(INT_MAX)/log(BucketCount));
 int power = 1;
 for(int p=0; p<passes;p++) {
 int i;
 for(i=0; i<A.size(); i++) {

 int item = A[i];
 int bucket = (item/power) % BucketCount;

 Table[bucket].push(item);
 }
 i =0;
 for(int b=0; b<BucketCount; b++)
 while(!Table[b].empty()) {
 A[i++] = Table[b].front(); Table[b].pop();
 }
 power *= BucketCount;
 }}

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort

In general it takes time

O(Passes*(NBuckets+A.length))

 where Passes= ⎡log(INT_MAX)/
log(NBuckets)⎤

It needs O(A.length) in extra space.

!

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Idea of Merge Sort

•  Divide elements to be sorted into two groups
of equal size

•  Sort each half
•  Merge the results using a simultaneous pass

through each

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Psuedocode for Merge Sort
void mergesort(int data[], int first, int n) {"
 if (n > 1) {"
 int n1 = n/2;"
 int n2 = n - n1;"
 mergesort(data, first, n1);"
 mergesort(data, first+n1, n2);"
 merge(data, first, n1, n2);"
 }"
}"

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Mergesort in Action

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Mergesort in Action

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

The Merge Operation

2 4 5 11 1 6 10 12

1 2 4 5 6 10 11 12

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Mergesort Performance

•  The worst-case, average-case, and best-case
running time for mergesort are all O(n log n)

•  The basic idea:

– by dividing in half we do O(log n) merges
– Each merge requires linear time

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

General Recursive Strategy
to Sort List L

•  If L has zero or one element, we’re finished
•  Otherwise

– divide L into two smaller lists L1, L2
–  recursively sort each of the smaller lists
–  combine L1 and L2

•  So far have considered merge combination
method

•  Next we’ll consider “joining” the two lists

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Quicksort
•  First devised by

the computer
scientist C.A.R.
Hoare

•  One of the most
effective
algorithms in
practice, though
quadratic in the
worst case

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Quicksort

•  Has two phases:
– partition phase, to break the array into two

pieces
–  the sort phase, to recursively sort halves

•  Most of the work goes into the partition phase

•  After partitioning, the values in the left half

are less than the values in the right half

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

The Pivot

What is the invariant?

 pivot

pivot index

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Choosing a Pivot
•  The key question: “How do we choose the pivot item?”
•  Can affect performance dramatically
•  Ideally, we should choose to pivot around the median
•  Was once thought that finding the median costs as

much as sorting...But the median can be found in O(n)
•  A deterministic algorithm might simply choose the first

element as the pivot.
•  A non-deterministic algorithm might choose the pivot

element randomly. The worst case does not change.

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 30 100 50 7 80 60 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 30 100 50 7 80 60 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 7 30 60 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 7 30 60 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 60 30 7 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 60 30 7 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 60 30 7 20 10 40

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 60 30 40 20 10 7

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Partitioning

90 70 80 100 50 60 30 40 20 10 7

pivotIndex = 4

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Quicksort Implementation
int pivot = arr[pivot_loc];
swap(arr[pivot_loc], arr[0]);
int l = 1;
int r = n - 1;
while(l < r) {
 // INVARIANT: all left of l <= pivot,
 // and all right of r > pivot
 while(l < r && arr[l] <= pivot) l++;
 while(r > l && arr[r] > pivot) r--;
 if(l < r) {
 swap(arr[r], arr[l]);
 l++;
 r--;
 }
}
if (arr[l] <= pivot) swap(arr[0], arr[l]);
else swap(arr[0], arr[l - 1]);

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Rough Analysis

•  If we divide the list in about half each time, we
partition O(log n) times

•  Finding the pivot index requires O(n) work

•  So, we should expect the algorithm to take
O(n log n) work if we find a good pivot

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Worst Case

•  When do we get a bad split?
•  If each value is larger than the pivot
•  This happens if the array is already sorted!

•  In this case runs in O(n2) time

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Ideas for Choosing Pivot

•  Randomly choose an index
•  Take the median of the first 3 elements
•  Take the median of 3 random elements
•  Median of random 2n+1 elements...

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Heapsort

•  Worst-case and average case O(n log n)

•  Uses heap data structure, pulling off max and
re-heapifying

•  [examples on the board]

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort Question

 What does the following list like after the first
iteration of radix sort’s outer loop?

 class
 leaks
 every
 other
 refer
 embed
 array

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Radix Sort Question

 What does the following list like after the first
iteration of radix sort’s outer loop?

 class embed
 leaks other
 every refer
 other class
 refer leaks
 embed every
 array array

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Mergesort Question

 If we are using Mergesort, what will the
following array look like right before the last
merge?

 35 57 53 26 50 15 22 21 25 14 11 2

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Mergesort Question

 If we are using Mergesort, what will the
following array look like right before the last
merge?

 35 57 53 26 50 15 22 21 25 14 11 2

 15 26 35 50 53 57 2 11 15 21 22 25

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Quicksort Question

 If we are using Quicksort, what will the result
be if we pivot on 35?

 35 57 53 26 50 15 22 21 25 14 11 2

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Quicksort Question

 If we are using Quicksort, what will the result
be if we pivot on 35?

 35 57 53 26 50 15 22 21 25 14 11 2

 25 2 11 26 14 15 22 21 35 50 53 57

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Heapsort Question

 Heapify the following list, placing the
maximum on top.

35 57 53 26 50 15 22 21 25 14 11 2

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Heapsort Question

 Heapify the following list, placing the
maximum on top.

35 57 53 26 50 15 22 21 25 14 11 2

57 50 53 26 35 15 22 21 25 14 11 2

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Heapsort Question

 Beginning with the following array, what is the
result of running the heapsort procedure (take
max put it on the end of the heap, re-heapify)
after four iterations?

57 50 53 26 35 15 22 21 25 14 11 2

95-771: Data Structures
and Algorithms for

Information Processing Copyright © 1999, Carnegie Mellon. All Rights Reserved.

Lecture 13: Sorting II

Heapsort Question

 Beginning with the following array, what is the
result of running the heapsort procedure (take
max put it on the end of the heap, re-heapify)
after four iterations?

57 50 53 26 35 15 22 21 25 14 11 2

26 25 22 21 14 15 2 11 35 50 53 57

