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Outline 

•  Brief review from last time 
•  Radix sorting and indexing  
•  Recursive sorting algorithms 

•  Quicksort 
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Sorting Demonstration 

 

http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html 
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Intuitive Introduction 

 

Main’s slides from Chapter 12 
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Insertion Sort 
void insertionSort(int A[]) { 
   for(int i=1; i<A.length; i++) 

 for(int j=i; j>0 && A[j]<A[j-1]; j--) 
  swap(A[j],A[j-1]); 

} 

•  Worst case runs in O(n2), where n = A.length. 

•  Best case, A is sorted already, runs in O(n). 

•  Use if you’re in a hurry to code it , and speed is   
not an issue. 
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What is the Average Disorder? 
Theorem: The average disorder for a sequence of n 
items is n(n-1)/4 

Proof: Assume all permutations of array A equally 
likely. If AR is the reverse of A, then disorder(A) + 
disorder(AR) = n(n-1)/2 because A[i]<A[j] iff 
AR[i]>AR[j]. Thus the average disorder over all 
permutations is n(n-1)/4.  	� 

Corollary: The average running time of any sorting 
program that swaps only adjacent elements is O(n2). 

Proof: It will have to do n(n-1)/4 swaps and may 
waste time in other ways.  	� 
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To better O(n2) we must compare 
non-adjacent elements 

Shell Sort: Swap elements n/2, n/4, … apart  

Heap Sort: Swap A[i] with A[i/2] 

QuickSort: Swap around “median” 
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How many leaves must there for a 
sorting tree for n items? 

a[0]<a[1] 

n!, the number of different permutations. 
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So a tree with n! leaves has depth at least lg n!.  

Notice that depth = the maximum number of tests one 

might have to perform. 

lg n! = lg n(n-1)(n-2)…1 

        = lg n + lg n-1 + lg n-2 + … + lg 1 

        ≥ lg n + … + lg(n/2) 

        ≥ (n/2) lg(n/2) 

        ≥ (n/2) lg n - n/2 

        = Ω(n lg n) 

So any sort algorithm takes Ω(n lg n) comparisons. 
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Is there a way to sort without 
using binary comparisons? 

 
 Ternary comparisons, K-way comparisons."

The basic Ω(n log n) result will still be true, because 
Ω(log2 x)= Ω(logk x)."
"

Useful speed-up heuristic: use your data 
as an index of an array."
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Consider sorting letters 

int counts[26]; 
int j = 0; 
for(int i=0; i<26; i++) counts=0; 
for(j=0; j<clist.length; j++) 

 count[clist[j]-’a’]++; 
j=0; 
for(int i=0; i<26; i++) 
  while(count[i]-- > 0) clist[j++]=i+’a’; 
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Sorting list of letters 
int counts[26]; 
int j = 0; 
for(int i=0; i<26; i++) counts=0; 
for(j=0; j<clist.length; j++) 

 count[clist[j]-’a’]++; 
j=0; 
for(int i=0; i<26; i++) 
  while(count[i]-- > 0) clist[j++]=i+’a’; 

 

Running time is O(26+clist.size()), i.e. linear!"

if clist = “abbcabbdaf”"
count = {3,4,1,1,0,1,0, …, 0}"

and new  clist = “aaabbbbcdf”"
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Why does this beat n log n? 

•  The operation count[clist[j]]++ is like a 
26-way test; the outcome depends directly on 
the data. 

•  This is “cheating” because it won’t work if the 
data range grows from 26 to 232. 

•  Technique can still be useful — can break up 
range into “buckets” and use mergesort on 
each bucket 
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Radix Sort 
A way to exploit the data-driven idea for large data 
spaces. 

Idea: Sort the numbers by their lowest digit. Then 
sort them by the next lowest digit, being careful to 
break ties properly. Continue to highest digit. 

4567 3480 1908 2009 109
2132 9241 109 109 456
456 8721 2009 2132 1908
1908 3521 8721 9241 2009
3456 2132 3521 3297 2132
9241 456 2132 456 3297
109 3456 9241 3456 3456
5789 4567 456 3480 3480
3297 3297 3456 3521 3521
2009 1908 4567 4567 4567
8721 109 3480 8721 5789
3521 5789 5789 5789 8721
3480 2009 3297 1908 9241
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Radix Sort 

•  Each sort must be stable 
   The relative order of equal keys is preserved 

•  In this way, the work done for earlier bits is 
not “undone” 
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Radix Sort 
Informal Algorithm: 

To sort items A[i] with value 0…232-1 (= INT_MAX) 

•  Create a table of 256 buckets. 

•  {For every A[i] put it in bucket A[i] mod 256. 

•   Take all the items from the buckets 0,…, 255 in a FIFO 
   manner, re-packing them into A.} 

•  Repeat using A[i]/256 mod 256 

•  Repeat using A[i]/2562 mod 256 

•  Repeat using A[i]/2563 mod 256 

•  This takes O(4*(256+A.length)) 
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Radix Sort using Counts 

void RadixSort(int a[], int b[], int N) { 
   int i, j, pass, count[M]; 
   for (pass=0; pass < (w/m); pass++) { 
      for (j=0; j < M; j++) count[j] = 0; 
      for (i=1; i <= N; i++)  
         count[a[i].bits(pass*m, m)]++; 
      for (j=1; j < M; j++) 
         count[j] = count[j-1] + count[j]; 
      for (i=N; i >= 1; i--) 
         b[count[a[i].bits(pass*m,m)]--] =   
                                         a[i]; 
      for (i=1; i <= N; i++) a[i] = b[i]; 
   } 
} 

The Queues can be avoided by using counts.!
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Radix Sort using Queues 
const int BucketCount = 256; 
void RadixSort(vector<int> &A) { 
 vector<queue<int> > Table(BucketCount); 
 int passes = ceil(log(INT_MAX)/log(BucketCount)); 
 int power = 1; 
 for(int p=0; p<passes;p++) { 
    int i; 
    for(i=0; i<A.size(); i++) { 

   int item = A[i]; 
         int bucket = (item/power) % BucketCount; 

   Table[bucket].push(item); 
    } 
    i =0; 
    for(int b=0; b<BucketCount; b++) 
      while(!Table[b].empty()) { 
         A[i++] = Table[b].front(); Table[b].pop(); 
      } 
    power *= BucketCount; 
 }} 
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Radix Sort 

In general it takes time 

O( Passes*(NBuckets+A.length)) 

     where Passes= ⎡log(INT_MAX)/
log(NBuckets)⎤ 

 

It needs O(A.length) in extra space. 

 

 

!
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Idea of Merge Sort 

•  Divide elements to be sorted into two groups 
of equal size 

•  Sort each half 
•  Merge the results using a simultaneous pass 

through each 
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Psuedocode for Merge Sort 
void mergesort(int data[], int first, int n) {"
  if (n > 1) {"
      int n1 = n/2;"
      int n2 = n - n1;"
      mergesort(data, first, n1);"
      mergesort(data, first+n1, n2);"
      merge(data, first, n1, n2);"
  }"
}"
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Mergesort in Action 
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Mergesort in Action 
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The Merge Operation 

2 4 5 11 1 6 10 12 

1 2 4 5 6 10 11 12 
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Mergesort Performance 

•  The worst-case, average-case, and best-case 
running time for mergesort are all O(n log n) 

•  The basic idea: 

– by dividing in half we do O(log n) merges 
– Each merge requires linear time 
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General Recursive Strategy 
to Sort List L 

•  If L has zero or one element, we’re finished 
•  Otherwise 

– divide L into two smaller lists L1, L2 
–  recursively sort each of the smaller lists 
–  combine L1 and L2 

•  So far have considered merge combination 
method  

•  Next we’ll consider “joining” the two lists 
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Quicksort 
•  First devised by 

the computer 
scientist  C.A.R. 
Hoare 

•  One of the most 
effective 
algorithms in 
practice, though 
quadratic in the 
worst case 
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Quicksort 

•  Has two phases: 
– partition phase, to break the array into two 

pieces 
–  the sort phase, to recursively sort halves 

•  Most of the work goes into the partition phase 

•  After partitioning, the values in the left half 

are less than the values in the right half 
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The Pivot 

What is the invariant? 

 pivot  

pivot index 
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Choosing a Pivot 
•  The key question: “How do we choose the pivot item?” 
•  Can affect performance dramatically 
•  Ideally, we should choose to pivot around the median 
•  Was once thought that finding the median costs as 

much as sorting...But the median can be found in O(n) 
•  A deterministic algorithm might simply choose the first 

element as the pivot. 
•  A non-deterministic algorithm might choose the pivot 

element randomly. The worst case does not change. 
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Partitioning 

90 70 30 100 50 7 80 60 20 10 40 
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Partitioning 

90 70 30 100 50 7 80 60 20 10 40 
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Partitioning 

90 70 80 100 50 7 30 60 20 10 40 
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Partitioning 

90 70 80 100 50 7 30 60 20 10 40 
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Partitioning 

90 70 80 100 50 60 30 7 20 10 40 
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Partitioning 

90 70 80 100 50 60 30 7 20 10 40 
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Partitioning 

90 70 80 100 50 60 30 7 20 10 40 
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Partitioning 

90 70 80 100 50 60 30 40 20 10 7 
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Partitioning 

90 70 80 100 50 60 30 40 20 10 7 

pivotIndex = 4 
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Quicksort Implementation 
int pivot = arr[pivot_loc];  
swap(arr[pivot_loc], arr[0]); 
int l = 1; 
int r = n - 1; 
while(l < r) { 
      // INVARIANT: all left of l <= pivot,  
      // and all right of r > pivot 
      while(l < r && arr[l] <= pivot) l++; 
      while(r > l && arr[r] > pivot) r--; 
      if(l < r) { 
            swap(arr[r], arr[l]); 
            l++; 
            r--; 
      } 
} 
if (arr[l] <= pivot) swap(arr[0], arr[l]); 
else swap(arr[0], arr[l - 1]); 
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Rough Analysis 

•  If we divide the list in about half each time, we 
partition O(log n) times 

•  Finding the pivot index requires O(n) work 

•  So, we should expect the algorithm to take 
O(n log n) work if we find a good pivot 
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Worst Case 

•  When do we get a bad split? 
•  If each value is larger than the pivot 
•  This happens if the array is already sorted! 

•  In this case runs in O(n2) time 
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Ideas for Choosing Pivot 

•  Randomly choose an index 
•  Take the median of the first 3 elements 
•  Take the median of 3 random elements 
•  Median of random 2n+1 elements... 
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Heapsort 

•  Worst-case and average case O(n log n) 

•  Uses heap data structure, pulling off max and 
re-heapifying 

•  [examples on the board] 
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Radix Sort Question 

   What does the following list like after the first 
iteration of radix sort’s outer loop? 

 
  class 
 leaks 
 every 
 other 
 refer 
 embed 
 array 
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Radix Sort Question 

   What does the following list like after the first 
iteration of radix sort’s outer loop? 

 
  class              embed 
 leaks              other 
 every              refer 
 other            class 
 refer              leaks 
 embed              every 
 array              array 
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Mergesort Question 

   If we are using Mergesort, what will the 
following array look like right before the last 
merge? 

 
      35 57 53 26 50 15 22 21 25 14 11 2 
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Mergesort Question 

   If we are using Mergesort, what will the 
following array look like right before the last 
merge? 

 
      35 57 53 26 50 15 22 21 25 14 11 2 
                                     
                                  
 
      15 26 35 50 53 57 2 11 15 21 22 25 
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Quicksort Question 

   If we are using Quicksort, what will the result 
be if we pivot on 35?  

 
      35 57 53 26 50 15 22 21 25 14 11 2 
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Quicksort Question 

   If we are using Quicksort, what will the result 
be if we pivot on 35?  

 
      35 57 53 26 50 15 22 21 25 14 11 2 
 
                                  
 
      25 2 11 26 14 15 22 21 35 50 53 57 
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Heapsort Question 

   Heapify the following list, placing the 
maximum on top. 

 
35 57 53 26 50 15 22 21 25 14 11 2 
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Heapsort Question 

   Heapify the following list, placing the 
maximum on top. 

 
35 57 53 26 50 15 22 21 25 14 11 2 

 
                                 
 

57 50 53 26 35 15 22 21 25 14 11 2 
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Heapsort Question 

   Beginning with the following array, what is the 
result of running the heapsort procedure (take 
max put it on the end of the heap, re-heapify) 
after four iterations? 

 
57 50 53 26 35 15 22 21 25 14 11 2 
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Heapsort Question 

   Beginning with the following array, what is the 
result of running the heapsort procedure (take 
max put it on the end of the heap, re-heapify) 
after four iterations? 

 
57 50 53 26 35 15 22 21 25 14 11 2 

 
 
 

26 25 22 21 14 15 2 11 35 50 53 57 


